
Introduction to R

Yu Ouyang

QIPSR Fall Software Festival

September 20, 2013

1 Introduction

The goal of this workshop is to introduce you to the programming language/statistical
software R and Rstudio, a popular graphical user-interface (GUI) for R users.

Since we’ll be using RStudio for this workshop, let’s begin by examining what the RStudio
GUI looks like when first initialized.

Figure 1: RStudio Interface

1

Figure 1 shows the four panels that you will be working with in RStudio. The upper left
panel contains your R script. Similar to a Do file in Stata or an M-file in MATLAB, an R
script allows you to keep a record of your analyses in R, assisting in reproducing your work.
The panel in the upper right contains your workspace, as well as a history of the commands
that you’ve previously entered. The lower right panel is a multi-purpose window that
allows you: (1) to view all files in your current working directory; (2) to view all plots
generated thus far in your analyses; (3) to see what packages are currently loaded in R; and
(4) to access the help menu. The lower left panel is where the action happens. It’s called a
console. Everything you launch RStudio, it will have the same text at the top of the
console telling you the version of R that you’re running, as well as some basic R
commands. Below that information is the prompt. Designated by the > symbol, the prompt
is a request for command; this is where you can type in some command, hit the enter
button, and immediately see some results. Since we generally want to keep track of our
analyses, we will work mostly with writing our commands in the R script and then transfer
them to the console.

2 Clear Workspace

By default, RStudio will save everything you generated to the workspace from the previous
session. What this means is that you may want to clear the workspace for the current
project. NOTE: Make sure this is what you want to do since the following command will
delete everything in the workspace.

For Stata users, the following command would be the equivalent of the clear all
command.

rm(list=ls()) # Delete everything in workspace

3 Set Working Directory

Similar to many other statistical packages, R allows you to set working directory. By
setting the working directory in R to a given folder on your computer, you are directing to
look in that folder for files, datasets, etc. The R command to set working directory is
setwd().

setwd("/home/yuouyang/Ubuntu One/Teaching/Misc/Introduction to R Workshop")

2

4 Arithmetic

What can you do using R? One basic way that you can use R is as a calculator, albeit a
pretty powerful one. Let’s do a couple of examples using addition, subtraction,
multiplication, and division.

4.1 Addition

2 + 2 # two plus two

[1] 4

As expected, R returns the value 4 as the result of 2 + 2.

Here is an opportunity to demonstrate a feature in R. The # symbol is what you would use
to include an inline comment in R. What it does is that R will ignore everything to the
right of the # symbol.

4.2 Subtraction, Multiplication, and Division

3 - 1 # three minus one

[1] 2

3 * 4 # three multiplied by 4

[1] 12

10 / 2 # ten divided by two

[1] 5

4.3 Order of Operation

The order of operation is as you learned in school. R will first do everything within the
parentheses first, then exponentiation, then muliplication and division, and last addition
and subtraction.
3 + 2 * 5 # multiply first

[1] 13

(3 + 2) * 5 # add first

[1] 25

3

5 Objects and Data Types

If you read descriptions of R before, you will probably seen it referred to as an
“object-oriented language.” Objects are things, like a vector of numbers, a word, a dataset,
etc. In this section, we wil use objects to illustrate the different data types in R.

Numeric: Numeric is simply numbers. It encompasses both integers and floating-point
numbers. You can do math with these types of objects.

Let’s create an object called two and assign to it the value 2, which is an integer.
two = 2 #Assign value 2 to the object named two
two

[1] 2

Here’s is another opportunity to illustrate a feature in R. The equal sign, =, symbol is
known as the assignment operator. It assigns what is on the right-hand side of the = sign
to what is on the left-hand side of the = sign. The equal sign can be used interchangably
with <-, the more traditional assignment operator. In the example above, we assigned the
value 2 to the object named “two.” To view the object, simply type the name of the object.

We can do the same with floating-point numbers and even scientific notations:
two.five = 2.5 #floating-point number halfway between 2 and 3
two.five

[1] 2.5

twoThousands = 2e3 # the scientific notation for 2 * 10^3 (or two thousands)
twoThousands

[1] 2000

String: Strings are simply a collection of characters or words that begins and ends with
quotes (“”). Used mostly for graphs, labels, and other descriptive texts.
string = "This is a bunch of words" # string object
string

[1] "This is a bunch of words"

4

Logical: The Boolean values true or false, used mostly for programming logic.
t = TRUE
t

[1] TRUE

f = FALSE
f

[1] FALSE

Factor: This is a special data type for storing categorical data. It combines the integer
and character types; we will talk more about this later.

NA: NA is the “missing data” placeholder in R.
missing = NA

5.1 Mutability

Objects in R are mutable. In other words, objects can be changed or replace. For example,
a = 2 #Assign 2 to a
a #Object a equals 2

[1] 2

a = a + 3 #Replace object a with a + 3
a #Object a now equals 5

[1] 5

Note the sequence of what we just did. Initially, the object a was assigned a value of 2.
Next, we replaced a with a plus 3. Now, the object a is equal to 5.

6 Functions

Most R tutorials will use the word function, instead of command. Functions are what we
use to carry out analysis on the data. For example, we would use the sqrt() function to
find the square root of some value or some object. sqrt(4) will give us the square root of
4, which is 2. I will use the words “function” and “command” interchangably throughout.

5

7 Help Menu

R has a very extensive built-in help and documentation system. To access the help file for,
for example, the plot command, enter a question mark followed by the command name.
?plot

Note that the help file for the plot command appears in the lower right panel in RStudio.
Most help files will provide a description of what the command does and how it’s generally
used. For now, the help files will most likely be little use to you as they can be a little
intimidating. However, as you becomes more familiar with R, you will find these help files
more and more “helpful.”

7.1 Alternatives to R’s Help Menu

If you’re an R novice, and find the help files very “unhelpful” at this point, what should you
do? In this case, Google is your friend. Chances are, we can search Google, or any other
search engine, for whatever that we wanted to do. For instance, let’s say that we want to
know how to create a scatterplot in R. We would simply type “create scatterplot in R” into
our favorite search engine and find a ton of useful information on how to create a
scatterplot in R.

Another method to get help on R commands is to see an example. Most R commands have
a series of examples on how to use the command. For example, let’s ask R to show us a
couple of examples using the plot command. We would type:

example(plot)

##
plot> require(stats)
##
plot> plot(cars)

6

●

●
●

●
●

●

●

●

●

●

●

●
●
●
● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●●

●

●

5 10 15 20 25

0
20

40
60

80
12

0

speed

di
st

##
plot> lines(lowess(cars))
##
plot> plot(sin, -pi, 2*pi) # see ?plot.function

−2 0 2 4 6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

si
n(

x)

7

##
plot> ## Discrete Distribution Plot:
plot> plot(table(rpois(100,5)), type = "h", col = "red", lwd=10,
plot+ main="rpois(100,lambda=5)")

0
5

10
15

rpois(100,lambda=5)

ta
bl

e(
rp

oi
s(

10
0,

 5
))

0 1 2 3 4 5 6 7 8 9 10 11

##
plot> ## Simple quantiles/ECDF, see ecdf() {library(stats)} for a better one:
plot> plot(x <- sort(rnorm(47)), type = "s", main = "plot(x, type = \"s\")")

8

0 10 20 30 40

−
2

−
1

0
1

2
plot(x, type = "s")

Index

x
<

−
 s

or
t(

rn
or

m
(4

7)
)

●

●
● ● ●

●

● ●
● ●

● ● ●
● ● ● ●

● ● ●
● ● ● ●

●
●

●

● ● ● ● ● ●
● ●

● ● ●
●

● ●
●

● ●

●

● ●

##
plot> points(x, cex = .5, col = "dark red")

At this point, it’s not really important to explain what each plot, and the associated
commands, is. For now, just know that R can provide examples of how to use a given
commands properly if we want it to.

9

8 Loading Data

Enough description, let’s do something more interesting in R. Since we work a dataset
most of the time, let’s try and load a dataset into R.

8.1 URLs

For datasets that are located on a website, all we need is the URL to the dataset. For
example, let’s grab a comma-separated dataset (or a CSV file) from the ATS website at
UCLA. We will use the read.csv() function to load the dataset. We will then use the
head() command to view the first few rows of the dataset.
#Load CSV from website
csv = read.csv("http://www.ats.ucla.edu/stat/data/test.csv", header = TRUE)
head(csv) #View first few rows

prgtype gender id ses schtyp level
1 general 0 70 4 1 1
2 vocati 1 121 4 2 1
3 general 0 86 4 3 1
4 vocati 0 141 4 3 1
5 academic 0 172 4 2 1
6 academic 0 113 4 2 1

Let’s review what just happened here. We loaded the CSV file from the website into an
object called csv, using R’s read.csv() function. In addition to the URL of the dataset,
we also told R that the first row of the CSV file contains the variable names
(header = TRUE). Putting the object’s name, csv, into the function head() allows us to
see the first few rows of the dataset stored in the object called csv.

8.2 CSV (on disk)

Let’s say that, instead of locating on a website, our CSV file is in our working directory.
Since we have already set working directory with the setwd() command, we can just load
the CSV file in the working directory using the read.csv function.
#Load CSV from disk using read.csv
csv1 = read.csv("test.csv", header = TRUE)

10

We can verify that the two datasets—one from the website (csv) and one from the working
directory (csv1)—are indentical by using the head() command.

head(csv)

prgtype gender id ses schtyp level
1 general 0 70 4 1 1
2 vocati 1 121 4 2 1
3 general 0 86 4 3 1
4 vocati 0 141 4 3 1
5 academic 0 172 4 2 1
6 academic 0 113 4 2 1

head(csv1)

prgtype gender id ses schtyp level
1 general 0 70 4 1 1
2 vocati 1 121 4 2 1
3 general 0 86 4 3 1
4 vocati 0 141 4 3 1
5 academic 0 172 4 2 1
6 academic 0 113 4 2 1

An alternative way to load the CSV file is to use the read.table command. This is to
illustrate that there are often multiple ways to do something in R.
#Load CSV from disk using read.table
csv2 = read.table("test.csv", header = TRUE, sep = ",")
head(csv2) #View first few rows

prgtype gender id ses schtyp level
1 general 0 70 4 1 1
2 vocati 1 121 4 2 1
3 general 0 86 4 3 1
4 vocati 0 141 4 3 1
5 academic 0 172 4 2 1
6 academic 0 113 4 2 1

As you can see in the example here, in addition to telling R the dataset’s name and that
the first row contains variable names, we also told R that the dataset is comma-separated,
or comma-delimited. Thus, the read.table() function is a generic command that allows
us to load in files with other delimiters. For instance, we can use this function to load files
with: (1) semicolon delimiters; (2) space delimiters; (3) character delimiters, and etc.

11

8.3 Foreign Datasets

While most people that use R as their primary statistical package will use datasets saved in
CSV format, R is also compatible with dataset formats created by other statistical
packages. In the example below, we will load the exact same dataset, but now in Stata’s
.dta format.

To load datasets in formats created by other statistical softwares, we will use the a package
in R called foreign. Packages are collections of R functions, data, and compiled code in a
well-defined format. The foreign package is compatible with datasets stored in Minitab,
S, SAS, SPSS, Stata, Systat, or dBase format.

require(foreign) #Load foreign package
dta = read.dta("test.dta") #Load dataset in Stata's .dta format
head(dta) #View first few rows

prgtype gender id ses schtyp level
1 general 0 70 4 1 1
2 vocati 1 121 4 2 1
3 general 0 86 4 3 1
4 vocati 0 141 4 3 1
5 academic 0 172 4 2 1
6 academic 0 113 4 2 1

Again, we can verify that the Stata .dta dataset is the same as the dataset in CSV.

head(dta) #First few rows from .dta dataset

prgtype gender id ses schtyp level
1 general 0 70 4 1 1
2 vocati 1 121 4 2 1
3 general 0 86 4 3 1
4 vocati 0 141 4 3 1
5 academic 0 172 4 2 1
6 academic 0 113 4 2 1

head(csv) #First few rows from .csv dataset

prgtype gender id ses schtyp level
1 general 0 70 4 1 1
2 vocati 1 121 4 2 1
3 general 0 86 4 3 1
4 vocati 0 141 4 3 1
5 academic 0 172 4 2 1
6 academic 0 113 4 2 1

12

9 Data Management

In this section, let’s do some basic things with data. We will use the cognitive test scores
dataset from Gelman and Hill (2007). 1 First, let’s load the dataset and look at the first
few rows of the data.

require(foreign) #Load foreign package
kidiq = read.dta("kidiq.dta") #Load Stata dataset "kidiq.dta"
head(kidiq)

kid_score mom_hs mom_iq mom_work mom_age
1 65 1 121.12 4 27
2 98 1 89.36 4 25
3 85 1 115.44 4 27
4 83 1 99.45 3 25
5 115 1 92.75 4 27
6 98 0 107.90 1 18

9.1 Examine Variables in a Dataset

Since this is a small dataset, we can easily see that there are only five variables. For larger
datasets, we can use the colnames() function to list all of the variables.

colnames(kidiq)

[1] "kid_score" "mom_hs" "mom_iq" "mom_work" "mom_age"

Using the colnames() function, we can see that the five variables are: (1) kid_score, (2)
mom_hs, (3) mom_iq, (4) mom_work, and (5) mom_age.

9.2 Dimension of the Dataset

How large is the dataset? To see the size of the dataset, we will use the dim() command.

dim(kidiq)

[1] 434 5

The dimension of the dataset is 434, 5. In other words, there are 434 rows and 5 columns
in the dataset.

1Gelman, Andrew, and Jennifer Hill. 2007. Data Analysis Using Regression and Multilevel/Hierarchical
Models. New York, NY: Cambridge University Press.

13

9.3 Rename Variable

If we want to rename a variable in a dataset, an easy way to do this is to use the rename
function from the reshape package.2 Generically, the structure of the command to rename
a variable looks like this:

mydata = rename(mydata, c(oldname = "newname")

Let’s focus on everything to the right of the equal sign first. Our original data is stored in
an object called mydata and we want to rename a variable from oldname to newname. Since
R objects are mutable, the left side of the equal sign says that we want to replace the “old”
mydata with the “new” mydata.

Now that we know how to use the rename command, let’s rename the variable mom_hs to
mom_HighSchool

colnames(kidiq) #View variable names

[1] "kid_score" "mom_hs" "mom_iq" "mom_work" "mom_age"

require(reshape) #Load reshape package
kidiq = rename(kidiq, c(mom_hs = "mom_HighSchool")) #Rename variable
colnames(kidiq) #View variable names, again

[1] "kid_score" "mom_HighSchool" "mom_iq" "mom_work"
[5] "mom_age"

2The reshape package may not be available. You may need to install it. Use the install.packages()
function. Type install.packages(“reshape”) into the R console.

14

9.4 Descriptive Stats

Commonly, one of the first things we do with a new dataset is to look at some summary
statistics. The summary() command is a generic function that works with many types of R
objects. Let’s try the summary() with our dataset (kidiq) and see what happens.

summary(kidiq) #Summarize dataset object

kid_score momCompletedHighSchool mom_iq mom_work
Min. : 20.0 Min. :0.000 Min. : 71.0 Min. :1.0
1st Qu.: 74.0 1st Qu.:1.000 1st Qu.: 88.7 1st Qu.:2.0
Median : 90.0 Median :1.000 Median : 97.9 Median :3.0
Mean : 86.8 Mean :0.786 Mean :100.0 Mean :2.9
3rd Qu.:102.0 3rd Qu.:1.000 3rd Qu.:110.3 3rd Qu.:4.0
Max. :144.0 Max. :1.000 Max. :138.9 Max. :4.0
mom_age
Min. :17.0
1st Qu.:21.0
Median :23.0
Mean :22.8
3rd Qu.:25.0
Max. :29.0

As you can see, the above command returns some basic information on each of the five
variables. What if we just want the summary statistics on one of the variables, say,
mom_HighSchool. To select the variable mom_HighSchool from the object kidiq, we would
type kidiq$mom_HighSchool in R.

summary(kidiq$mom_HighSchool) #Summary Stats on mom_HighSchool

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 1.000 1.000 0.786 1.000 1.000

Why do we have a dollar sign ($) between the name of our data object and the variable
name? The dollar sign is called the component selector; it basically extracts a
part—component—of an object.

15

9.4.1 Factor Variables

Here’s another opportunity to demonstrate an R feature: factor variables. Let’s create a
factor variable called momCompletedHighSchool based on mom_HighSchool and put it into
the dataset object kidiq. In the following command, the first label, “no,” correspond to
mom_HighSchool = 0 and the second label, “yes,” will correspond to mom_HighSchool = 1
because the order of the labels will follow the numeric order of the data.
#Create a new factor variable based on mom_HighSchool in kidiq
kidiq$momCompletedHighSchool = factor(kidiq$mom_HighSchool, labels = c("no", "yes"))
colnames(kidiq)

[1] "kid_score" "mom_HighSchool"
[3] "mom_iq" "mom_work"
[5] "mom_age" "momCompletedHighSchool"

head(kidiq)

kid_score mom_HighSchool mom_iq mom_work mom_age momCompletedHighSchool
1 65 1 121.12 4 27 yes
2 98 1 89.36 4 25 yes
3 85 1 115.44 4 27 yes
4 83 1 99.45 3 25 yes
5 115 1 92.75 4 27 yes
6 98 0 107.90 1 18 no

16

10 Basic Graphs

In this section, we will examine a couple of ways to generate basic graphs in R. Using the
kidiq dataset, we will begin with a histogram. A histogram is very useful for displaying
the distribution of a continuous variable. In R, you can create histograms with the hist()
function, where x is a numeric vector of values. Let’s create a histogram for the variable
kid_score from the kidiq dataset.

hist(kidiq$kid_score) #Histogram of kid_score

Histogram of kidiq$kid_score

kidiq$kid_score

F
re

qu
en

cy

20 40 60 80 100 120 140

0
20

40
60

80

17

We can alter the default histogram by adding: (1) a title; (2) a y-axis label; (3) a x-axis
label; and change the y-axis to proportions.

hist(kidiq$kid_score, #Histogram of kid_score
main = "Children Test Score (Histogram)", #Add Title
ylab = "Proportions", #Add label (y-axis)
xlab = "Children Test Score", #Add label (x-axis)
freq = FALSE #Change y-axis to percentages
)

Children Test Score (Histogram)

Children Test Score

P
ro

po
rt

io
ns

20 40 60 80 100 120 140

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

18

10.1 The plot() function

More generically, R offers the plot() function to create a variety of graphs. Depending on
the type of data inserted, the plot() function may returns different plots.

For example, the following command will return a barplot for a categorical variable.

plot(kidiq$momCompletedHighSchool)

no yes

0
50

10
0

15
0

20
0

25
0

30
0

19

For a continuous variable, the plot() function will return a scatterplot, as the following
command demonstrates.

plot(kidiq$kid_score)

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

0 100 200 300 400

20
40

60
80

10
0

12
0

14
0

Index

ki
di

q$
ki

d_
sc

or
e

20

With a continuous variable, the plot() function also allows us to specify another variable
on the x-axis.

plot(kidiq$kid_score ~ kidiq$mom_HighSchool)

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

20
40

60
80

10
0

12
0

14
0

kidiq$mom_HighSchool

ki
di

q$
ki

d_
sc

or
e

In the command above, the tilde symbol, ~, delineates the variable on the y-axis and the
variable on the x-axis.

21

Note what happens when we specify a factor variable on the x-axis.

plot(kidiq$kid_score ~ kidiq$momCompletedHighSchool)

●

no yes

20
40

60
80

10
0

12
0

14
0

kidiq$momCompletedHighSchool

ki
di

q$
ki

d_
sc

or
e

22

11 Basic Analysis

In this section, we will use linear regression to illustrate how to conduct analyses in R.
Again, we will use the kidiq dataset.

11.1 Linear Regression - Single Predictor

Let’s fit a linear model with the child’s test score (kid_score) as the dependent variable
and the mother’s score on an IQ test—a continuous variable—as the independent variable.
We fit the model and view the results using the following commands:

single = lm(kidiq$kid_score ~ kidiq$mom_iq) #Fit linear regresion model
summary(single) #View results of the model

##
Call:
lm(formula = kidiq$kid_score ~ kidiq$mom_iq)
##
Residuals:
Min 1Q Median 3Q Max
-56.75 -12.07 2.22 11.71 47.69
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 25.7998 5.9174 4.36 1.6e-05 ***
kidiq$mom_iq 0.6100 0.0585 10.42 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 18.3 on 432 degrees of freedom
Multiple R-squared: 0.201,Adjusted R-squared: 0.199
F-statistic: 109 on 1 and 432 DF, p-value: <2e-16

Let’s review what just happened. We fitted the following linear model using the lm()
function and saved the results in the object single:

kid_score = mom_iq+ ε

We then used the summary() command to view the results of the linear model.

23

Let’s now look at the linear model on a plot.

plot(kidiq$kid_score ~ kidiq$mom_iq, #Scatterplot
xlab = "Mother's IQ Score", #Add x-label
ylab = "Child Test Score" #Add y-label
)
abline(single) #Add linear fit line

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
● ●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●
●

●●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

70 80 90 100 110 120 130 140

20
40

60
80

10
0

12
0

14
0

Mother's IQ Score

C
hi

ld
 T

es
t S

co
re

The fitted model is:

̂kid_score = 25.80 + .61 ∗mom_iq+ ε

24

11.2 Linear Regression - Multiple Predictors

Let’s make the previous linear model simply more complicated by adding another
independent variable, mom_HighSchool.
#Fit multiple regression model
multiple = lm(kidiq$kid_score ~ kidiq$mom_iq + kidiq$mom_HighSchool)
summary(multiple) #View results

##
Call:
lm(formula = kidiq$kid_score ~ kidiq$mom_iq + kidiq$mom_HighSchool)
##
Residuals:
Min 1Q Median 3Q Max
-52.9 -12.7 2.4 11.4 49.5
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 25.7315 5.8752 4.38 1.5e-05 ***
kidiq$mom_iq 0.5639 0.0606 9.31 < 2e-16 ***
kidiq$mom_HighSchool 5.9501 2.2118 2.69 0.0074 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 18.1 on 431 degrees of freedom
Multiple R-squared: 0.214,Adjusted R-squared: 0.21
F-statistic: 58.7 on 2 and 431 DF, p-value: <2e-16

The fitted model is:

̂kid_score = 25.73 + 5.95 ∗mom_HighSchool+ 0.56 ∗mom_iq+ ε

25

Let’s plot this model.
#Fit multiple regression model
multiple = lm(kidiq$kid_score ~ kidiq$mom_HighSchool + kidiq$mom_iq)
plot(kidiq$kid_score ~ kidiq$mom_iq, #Scatterplot
xlab = "Mother's IQ Scores", #Add x-label
ylab = "Children Test Scores", #Add y-label
)
curve(coef(multiple)[1] + coef(multiple)[2] + coef(multiple)[3]*x, #Generate fit line
add=TRUE, col="red") #Add fit line to previous plot and color it red
curve(coef(multiple)[1] + coef(multiple)[3]*x, add=TRUE)
points(kidiq$mom_iq[kidiq$mom_HighSchool==1],
kidiq$kid_score[kidiq$mom_HighSchool==1], col="red")

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

70 80 90 100 110 120 130 140

20
40

60
80

10
0

12
0

14
0

Mother's IQ Scores

C
hi

ld
re

n
Te

st
 S

co
re

s

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

26

A ton of stuff just happened to generate the previous graph. Let’s break it down piece by
piece. First, we fitted the model using the lm() function and saved the results to an object
called multiple. Next, using the plot() command, we generated a scatterplot with
Children Test Scores (kid_score) on the y-axis and Mother’s IQ Scores (mom_iq) on the
x-axis. Of course, we made the scatterplot prettier by adding an x-label and a y-label.
Third, using the curve() command, we added two linear fit lines, one for those children
whose mother completed high school (red line) and one for those children whose mother
did not complete high school (black line). The last command, using the points() function,
colors those observations whose mother completed high school red.

11.3 Linear Model - Interactions

What if we want to add an interaction term between mom_iq and mom_HighSchool into the
previous model?
#Fit multiple regression model with interactions
interaction = lm(kidiq$kid_score ~ kidiq$mom_HighSchool + kidiq$mom_iq
+ kidiq$mom_iq*kidiq$mom_HighSchool)
summary(interaction)

##
Call:
lm(formula = kidiq$kid_score ~ kidiq$mom_HighSchool + kidiq$mom_iq +
kidiq$mom_iq * kidiq$mom_HighSchool)
##
Residuals:
Min 1Q Median 3Q Max
-52.09 -11.33 2.07 11.66 43.88
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -11.482 13.758 -0.83 4e-01
kidiq$mom_HighSchool 51.268 15.338 3.34 9e-04 ***
kidiq$mom_iq 0.969 0.148 6.53 1.8e-10 ***
kidiq$mom_HighSchool:kidiq$mom_iq -0.484 0.162 -2.99 3e-03 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 18 on 430 degrees of freedom
Multiple R-squared: 0.23,Adjusted R-squared: 0.225
F-statistic: 42.8 on 3 and 430 DF, p-value: <2e-16

27

To see how this model looks graphically, we would do the same thing as the previous graph.
#Fit multiple regression model with interactions
interaction = lm(kidiq$kid_score ~ kidiq$mom_HighSchool + kidiq$mom_iq
+ kidiq$mom_HighSchool*kidiq$mom_iq)
plot(kidiq$kid_score ~ kidiq$mom_iq,
xlab="Mother IQ score",
ylab="Child test score"
)
curve(coef(interaction)[1] + coef(interaction)[2] + (coef(interaction)[3]
+ coef(interaction)[4])*x,
add=TRUE, col="red")
curve (coef(interaction)[1] + coef(interaction)[3]*x,
add=TRUE)
points(kidiq$mom_iq[kidiq$mom_HighSchool==0],
kidiq$kid_score[kidiq$mom_HighSchool==0])
points(kidiq$mom_iq[kidiq$mom_HighSchool==1],
kidiq$kid_score[kidiq$mom_HighSchool==1], col="red")

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
● ●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●
●

●●●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

28

12 Display Model Results in Caterpillar Plot (Advance)

Many packages that estimate statistical models have built in plotting capabilities. For
example, the survivial package has a plot.survfit() command for plotting survivial
curves created using event history analysis.

However, sometimes either a package doesn’t have built in commands for plotting model
results the way you want to and/or you wish to improve the aesthic quality of the plots
they do create by default. In either case, you can almost always create the plot that you
want by first breaking into the model results object, extracting what you want, then
plotting it with the ggplot2 package.

To illustrate, let’s create a caterpillar plot showing the coefficient estimates and the
uncertainty surrounding them. Further, let’s fit one of the previous models using a
Bayesian normal linear regression framework. NOTE: The following commands will
require that the Zelig, ggplot2, MCMCpack, and coda packages to be already installed in R.
#Load Zelig package
require(Zelig)

#Estimate model
bayes.model = zelig(Examination ~ Education + Agriculture +
Catholic + Infant.Mortality,
model = "normal.bayes",
data = swiss)

##
##
How to cite this model in Zelig:
Ben Goodrich, and Ying Lu. 2013.
"normal.bayes: Bayesian Normal Linear Regression"
in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"
http://gking.harvard.edu/zelig
##

#Create summary object
bayes.modelSum = summary(bayes.model)

#Create summary data frame
bayes.modelDF = data.frame(bayes.modelSum$summary)

#Show data frame
bayes.modelDF

29

Mean SD X2.5. X50. X97.5.
(Intercept) 18.646074 5.92866 7.0305 18.650330 30.42487
Education 0.424876 0.09097 0.2425 0.425473 0.60040
Agriculture -0.067269 0.04251 -0.1515 -0.067515 0.01549
Catholic -0.079682 0.01807 -0.1153 -0.079837 -0.04404
Infant.Mortality -0.007321 0.23554 -0.4688 -0.009075 0.45927
sigma2 19.895381 4.56803 12.8441 19.254808 30.69691

We want to use the ggplot2 package to create credibility intervals for each variable with
X2.5. as the minimum value and X97.5. as the maximum value. These are the lower and
uppoer bounds of the middle 95 percent of the estimates’ marginal posterior distributions,
i.e. the 95 percent credibility intervals.3 We will create a point in the mean of each
estimate. To do this, we will use ggplot2’s geom_pointrange command.

First, we need to do a little cleaning up.
#Convert row.names to normal variable
bayes.modelDF$Variables = row.names(bayes.modelDF)

#Keep only coefficient estimates
This allows for a more interpretable scale
bayes.modelDF = subset(bayes.modelDF, Variables != "(Intercept)")
bayes.modelDF = subset(bayes.modelDF, Variables != "sigma2")

The first line of the executable code creates a proper variable out of the data frame’s
row.names attribute. In this case, row.names contains the names of the variables included
in the regression. The second and third executable lines remove the estimates (Intercept)
and sigma2. This allows the variable’s coefficient estimates to be plotted on a scale that
enables easier interpretation.

Now, we can create our caterpillar plot.
#Load ggplot2 package
require(ggplot2)

#Make caterpillar plot
ggplot(data = bayes.modelDF,
aes(x = reorder(Variables, X2.5.),
y = Mean,
ymin = X2.5., ymax = X97.5.)) +
geom_pointrange(size = 1.4) +
geom_hline(aes(intercept = 0), linetype = "dotted") +

3The procedures used here are also generally applicable for graphing frequentist confidence intervals once
you have calculated the confidence intervals. One useful command for that purpose is confint.

30

xlab("Variables\n") +
ylab("\n Coefficient Estimate") +
coord_flip() +
theme_bw(base_size = 20)

●

●

●

●

Infant.Mortality

Agriculture

Catholic

Education

−0.3 0.0 0.3 0.6

 Coefficient Estimate

V
ar

ia
bl

es

There are some new pieces of code in here, so let’s take a look. First, the data frame is
reordered from the highest to lowest value of X2.5. using the reorder command. This
makes the plot easier to read. The middle point of the point range is set with y and the
lower and upper bounds with ymin and ymax. The geom_hline command used here creates
a dotted horizontal line at 0, i.e. no effect. coord_flip flips the plot’s coordinates so that
the variable names are on the y axis.

31

	Introduction
	Clear Workspace
	Set Working Directory
	Arithmetic
	Addition
	Subtraction, Multiplication, and Division
	Order of Operation

	Objects and Data Types
	Mutability

	Functions
	Help Menu
	Alternatives to R's Help Menu

	Loading Data
	URLs
	CSV (on disk)
	Foreign Datasets

	Data Management
	Examine Variables in a Dataset
	Dimension of the Dataset
	Rename Variable
	Descriptive Stats
	Factor Variables

	Basic Graphs
	The plot() function

	Basic Analysis
	Linear Regression - Single Predictor
	Linear Regression - Multiple Predictors
	Linear Model - Interactions

	Display Model Results in Caterpillar Plot (Advance)

